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Abstract. We obtain the functional relations for the eigenvalues of the transfer matrix of(@e

chiral Potts model foy? = —1. For the homogeneous model in both directions a solution of these
functional relations can be written in terms of roots of Bethe ansatz-like equations. In addition, a
direct nested Bethe ansatz has also been developed for this case.

1. Introduction

The discovery of the chiral Potts model (CPM) and mévstate solutions of the Yang—Baxter
relation [1-4] is one of the most impressive results in the theory of two-dimensional lattice
integrable systems[5]. Aremarkable feature of this model is thatthe spectral parameters belong
to a high genus algebraic curve. The reason for this remained unclear until it was shown that
the weights of the CPM naturally appear as intertwiners of the cyclic representatiah&for
L-operators [6] related to the six-vertex model [7].

The next step was to generalize the CPM fordh@) case foig" = —1[8]. As aresult,

a newN"l-state family of generalized CPMs has been obtained with Boltzmann weights
satisfying the Yang—Baxter relation [9, 10].

Then Bazhanov and Baxter [11] made a remarkable observation thd{itheCPM with
N = 2isrelated to the integrable three-dimensional Zamolodchikov model [12,13]. Therefore,
a new link between two quite different regions of the theory of integrable models has been
revealed. It is well known that the tetrahedron equations provide sufficient conditions for a
commutativity of the transfer matrices in three dimensions [14,15]. As a result, & retate
three-dimensional family of integrable models has been discovered with Boltzmann weights
satisfying the tetrahedron equation [16, 17].

The Zamolodchikov model attracted a lot of attention even before the appearance of the
CPM. Its partition function in the thermodynamic limit has been calculated in [18] and the
related Hamiltonian has been studied in [19]. It was shown in [19] that the Zamolodchikov
model with two layers is equivalent to the critical two-dimensional free-fermion model.
However, the structure of the spectrum of the Zamolodchikov model with three and more
layers remains unclear.
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Figure 1. The square lattice.

In this paper we try to take several steps towards the understanding of the structure of the
spectrum of the/ (3) CPM which is equivalent to the ‘modified’ (in the terminology of [11,18])
three-layer Zamolodchikov model. Starting from the general case we carefully analyse the
homogeneous case of thig3) CPM where a usual nested Bethe ansatz technique [20] can be
applied.

The paper is organized as follows. In section 2 we give a full description ef (8eCPM
and introduce all necessary notations. In section 3 we describe a ‘fusion’ procedure [21-23]
for the s/(3) CPM for g> = —1 (N = 2) and obtain the closed functional equations for
eigenvalues of the transfer matrix. Section 4 is devoted to the spectrum of the model in the
completely homogeneous case. In section 5 we apply the nested Bethe ansatz technique to
obtain eigenvalues of the transfer matrix for the homogeneous case. In the last section we
discuss our results and further directions for investigation.

2. The sl(3) CPM

In this section we give all necessary definitions for¢h@®) CPM with fixedN. All definitions
and formulae of this section are just a specification ofstlie) case fom = 3 [10].

Consider an oriented square latti€and its medial lattic&’ (shown in figure 1 by solid
and dashed lines, respectively). The oriented vertical (horizontal) lin€$ cdirry rapidity
variablesp1, p» (r1, r2) in an alternating order (note that the orientations of rapidity lines shown
by open arrows alternate too). The edges of the laffiege oriented in such a way that all
the NW-SE edges have the same (NW-SE) direction while the NE-SW edges are oriented in
a checkerboard order.

Each rapidity variable is represented by three 2-vectgr§/), »; (p)), i = 1, 2, 3 which
specify the poinip of the algebraic curv€ defined by relations

h-*(p)N> <h+-(p)N> .
L =K., 7 Vi, j=1,2,3 2.1
(hi (P AVHON i (1)
whereK;; are 2x 2 complex matrices of moduli satisfying relations

detK[j =1 K, = K,‘jKijk,‘ =1 (22)

Hereafter we imply that indices j, k, . . . run the values 12, 3 modulo3.



Functional equations fox/(3) chiral Potts model ay? = —1 3043

8 8

AN ZA AN /
AN / B N y
NP 1
- qu(aaﬂ) AN - W—(OIT)
p /7 |\ ¢ p q w
2 VIR 2 PN

Figure 2. The weightsW,, (, 8) andW, Ha, B).

Below we need the automorphisnon the curvd™ defined as follows:

h}(f(p)) = h;(p) h; (t(p)) = wh; (p) J=123 (2.3)
On each site of the latticé placeZy x Zy spins, which are described by a local variable
o = (o, 00p) o, 0020=01,..., N—1 (2.4)

There are two kinds of neighbouring local state pairs depending on the relative orientation
of the dashed and solid lines as indicated in figure 2, with statesd 8, and Boltzmann
weightsW ,, (o, ) and(W,, («, 8))~* on the edges of.

The functioanq (o, B), a, B € Zy x Zy is defined by the following relations:

Wp,q(a, B) = 6UQ<oz,/3)gpq(o, a—pB) o= exp(%ﬂi) (2.5)

where
O, p)=pr(fr—a) +fa(fpr—on+fo—),a, p € Zy x Zy (2.6)
and the functiorg,, (0, @) has the following form:

T15567 7 (h§(p)hg (@) — hi(@)hg (P)w ™)
T2 5250 ()i (@) = B (@)h7 (Pt
We choose a normalization &, («, B) as

W,,(0,0) = 1. (2.8)

Then it is easy to see that

gpq(ova) = (27)

_ _ - 1 o = B (modN)
Wor(@ P =bup dup =1 otherwise (2.9)
The functionW,,, («, B) satisfies the inversion relation
Z qu (Cl, ,B)qu(ﬁ’ V) = Sa,ycppq (210)
BeEZNXZy
where
X =3 B x(p) —xi(g) hi (p) :
®,, = N2-2 1 d d xi(p) = = X, = x;i (p).
e xp—xg i1 (PN — xi(@V =5 ? ,11 u
(2.11)

Now let us suppose that our latticehas M sites in a horizontal direction and sites
in a vertical one L. should be even). As usual we imply cyclic boundary conditions in both
directions.
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Figure 3. R-matrix Sf,’.g([?l» P23 11, 12).

Let us denote the spin variables of three consecutive rows,as. , oy, o7, ..., o5, and

oy, ..., s} (seefigure 1). Then we can define tWg" x N2 transfer matrice,, and7,,
of the lengthm

I
01..0)
[Tp1 01..0m

y piri (O—i ’ o'i/)Wrzpl (Ui/v Ui+1) (212)

= 1=

Il
AN

LG ) (2.13)

[Tp ]01"4“0,2,’,
N P .
a Wi (07", o))

Oy

l

Let us fix the rapidity variables;, r» and use more simple notatioffi, andf,,z.
The partition function is

Z = Tr (T, T,,)""> (2.14)
In the next sections we derive several functional relations bet@geand7,,.

We can construct tw®-matrices from the weight®,, («, 8). Define (see figure 3)
Wiaps (Vs Wi (@, ) Wi, (B )
Wpr, (B, 8)

This R-matrix satisfies the Yang—Baxter equation

Sy (p1, p2i 12, r)= (2.15)

S12(p1, P2; q1. 42)S13(p1, p2; 11, 12)S23(q1, q2; 11, 72)
= 523(q1, g2; 11, 72) S13(p1, p2; 11, 72) S12(p1, P25 91, 42). (2.16)

It leads us to the following commutation relation for the product of the transfer matrices
TPz T[’l:

Ty, Tp T, Ty = Tg, Ty Ty, Ty (2.17)
whereps, p2, g1, g2 are four points on the curve.

Similarly, one can introduce the secoRdmatrix S (see [10], for example) and prove
another commutation relation

Ty, sz Ty, qu =T qu Ty, sz . (2.18)

However, all commutation relations between the transfer matrices are the consequence of
the only equation which is called the ‘star—star’ relation [11, 24]. To write it down define two
‘stars’ (see figures 4 and 5)

. Wi (&, YWy (7, ) Wy (0, B)
WhP (o, By, 8) = )~ o 22

4 (2.19)
o Wp2r1(85 O—)
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Figure 5. The ‘star’ weightW/22(a, 8. y, 5).
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Figure 6. The ‘star—star’ relation.

and

Wz By, 8) = Y L@V U @ W€, 0),
o ‘4}}72r1 ((77 ﬁ;)
In these notations the star—star relation can be written as (see figure 6)

Wiopn (8, ) Wiy, (8, Y)W (at, B, v, YW (e, By 8) Wiy (. BY Wiy (v, B). (2.21)

ra2ri

(2.20)

The Yang—Baxter equation (2.16) can be easily obtained by repeated applications of (2.21).
Now using (2.21) we obtain one more ‘commutation’ relation between the transfer matrices

Ty, Tp,. To do that define the shift operator

p1y

M
Xotow =00 (2.22)
i=1
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Then, using cyclic boundary conditions in a horizontal direction and relation (2.21), we obtain
T, T, UYXx =vu9Xx'T,,T, (2.23)

whereU @ is the diagonal matrix independent pf, p,

M
[U(d)]gigﬁ = 1_[50,-,0[’ _I‘g,rl(aiv O-i+1)~ (224)

3. Functional relations atq? = —

. Here we consider only the cagé = w = —1. The product of the transfer matricE,;T,,2
can be easily rewritten in terms of ‘star’ weights (2.19)

M
Tmsz = 1_[ erlifz(a,-, Oi+1, Gi/+1’ Ui/)' (31)
i=1
We can specify the horizontal rapidities in such a way that the left and right ‘gauge’ factors
W, 0. (@, B) in (2.21) become degenerate. Namely, there are two simplest choices to do that

p2 = r’\(p) pi=7p A=0,1 3.2)

wherer is defined in (2.3) and the case= 0 corresponds just tp, = p1 = p.
First let us sefp, = p; = p. Then using (2.21) and the explicit form @ifplpz(a, B)
it is easy to see that we have the only non-zero matrix element$V{@y(«, B, y, «) if
B = y. Similarly settingp, = 7(p1) we obtain that the only non-zero matrix elements
for W/HP (a, B, B, §) are whenw = 4.
Therefore, we obtain foT,,TTA(,,) thatifo; = o/ forsomel =1, ..., M then

4

[T, T =0  if o,#0]  forsome J#I, J=1,....M. (3.3)

As aresult we can splif, T,)‘(p) into ‘diagonal’ and ‘non-diagonal’ parts. To do this explicitly
consider two 4x 4 projectors

Ply=3 Py=08,—1 y.d=1....4 (3.4)

Now let us consideR-matrix (2.15) as 4x 4 matrix with respect to horizontal indices with
fixed vertical ones and denote it 85 ,, («, 8). Then we have

P*S,,(a, )P = P*S,,(a, B) P~ Syp(a, BYP™ = S,,(a, B)P™ (3.5)
P*Spep(a, BYPT = S,y (a, B)P* P Spep)(e, BYP™ = P~ S, (@, B). (3.6)
As a consequence we have the following decomposition of the praydit, ,:

TyTenpy = Tr(P*S (@, BYPHYM + Tr(P~ Sy (a0, BIPHM. (3.7)
It is not difficult to check that

Tr(P*Sperpy (e, PHY = @) 1 (3.8)

wherel being the identity matrix4 x 4, @, is defined in (2.11) and all subscripts should
be consideredhodulo2. Denote the second term in (3.7) as

TN (p; rien, r241) = Tr(P™ S0 (a, HYPHM. (3.9)

The transfer matrix (3.9) has non-zero matrix elements ordy i o/, VI =1,..., M.
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Itis not difficult to construct local ‘fused’ weights for the transfer mafti¥' (p; r141, 724).
First let us write the following decomposition fér:
3
Pry=) clip)ed)  elio)=jot Ve =123 acZixZ
i=1

(3.10)

Now consider the family of ‘fused’.-operators which act in the tensor product of the auxiliary
spaceC? and the quantum spac¥':

L pirerd) = My Y €l p)el. 8 (p. T (p)ir2, 1) (3.11)
y,SEZzXZZ
1hs 2h+ 2 he 2h+ 2
A = 2 3_,(r1) 3(p) 3 (P)°h3(r1) H(h (r)l(p) + h (P (r2)) (3.12)

4 hy (r2)%h3(p)? — hy (p)*h3(r2)? i

andS%£ (p1. pa; r2. r1) is defined in (2.15).
Introduce the transfer matri¥® (p; r1, r2) constructed from the ‘fusedL-operators
L{? (p: r1.r2) over the auxiliary space’

1D (psr1, r2)ay ow = Z ZH[ o (Pl (3.13)

iy a=

Itis easy to check that two transfer matrldéé) (p; r1, r2) in(3.9)and @ (p; ry, o) are related
as follows:

T®(p;r1.ra) = tP(p;r1,r2). (3.14)
piri,r2
Therefore, the problem of calculating eigenvalues for the product of two transfer matrices
TPT,A(,,) in (3.7) is reduced to a calculation of the eigenvalues for the transfer matrix
t®(p; ry, 1) in (3.13).
Let us give explicit formulae for the matrix elementslcﬁ‘) (p; r1, r2). We have

L(A) (pir1,r2) = U (psr1, 1) Xisa Y u;_1(p;r, r2) X1 (3.15)
L (pirer2) = Zi a0, (3 11, 1) X + wi™ (pi 11, r2) Xi21) (3.16)
LY ((pirr2) = Ziioa (0 (i 1 1) Xic 1 + wiy (pi 11, 12) Xie) (3.17)
where
+ h (r2) oot
wi pirrd) = e L Hh (p)h (r1) (3.18)
W (p; 11, 12) = hF (P)hF (r) iy (r) R ()1 (PYh_1(r1) (3.19)
“ (pi 1. 12) = hF (PIRE(r) T (rD R (PRT  (r)hE 1 (p). (3.20)
The 4x 4 matricesX; andZ; ; actinZ, x Z, and have the following matrix elements:
<a|X1|IB> = 80{1,ﬁ180t2,/32—1 ((X|X2|ﬁ> = 6&1,/31—18&2,/32 (3'21)
<a|Z1|ﬂ) = wazaal,ﬁl(saz,ﬁz <a|Z2|IB) = wala(xl,ﬂlaaz,ﬁz (322)

X1X2X3=1 Z3=1 Zij=ZZ;* i#j=1273 (3.23)
They satisfy the usual relations
X; ij =w 8ij— 'kZ kX Zl‘ijka,‘ =1 (324)
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Actually, it is convenient to introduce the ‘gauge-transformediperators

L (xpirera) = []‘[h (p)} [& (P TY LY (pi e r2)[ ()] P

1+

(3.25)

where

E(p) = (E(p), &2(p), E3(p) = (x3(p), L, x (p)) (3.26)

andx,, x; (p) are defined in (2.12).
It is easy to see that-operators (3.25) depend on the rapidity variablenly via the
combinationx,,. Therefore, we have

3 M
1P (piryry) = (]_[ h?(p)> 1Y (xp3 1, 72) (3.27)
i=1

wheret™ (x,; r1, rp) is the transfer matrix constructed from ttieoperators (3.25) and is
obviously just a polynomial in the variablg, of the degree\/.

It follows that we can consider the parametﬁlrshf(rl), h?(rz) as independent ones and
do not take into account the surface equations (2.1).

L-operators (3.25) satisfy the following Yang—Baxter equation:
D Rl s CIML AL %= D L OOLL AR (/) (3:28)

i2,j2 i2, )2

where we omit a dependence onr; in L(“(x r1, o) and Rfl’\z2 i jz(x) coincides with the

deformed trigonometrig/ (3) R-matrix. Namely, let us assume for a moment thetarbitrary
and introduce th&-matrix [25]

Ril«iZ;jlij (x,q,p) = 81112811j23i1j1 (q — D(x+ x_l _1) + 8111281112/011]1 (x — l)

+8i1j2 i2j1(1 - 851jl)o'i1i2(x) (329)
where
0 i=j
pii = pijpji =1 o;=1(q—q Hx i<j (3.30)
=g Hxt i
Then
1(3)12 J1.J2 (x) = Ry, iz:jlg.iz(x(il)k’ q,p) (3.32)
with
g=i pijsr= Py =iV j=123. (3.32)

Now using a fusion technique for the-matrix (3.29) we can construct functional equations
for the transfer matrix® (x,; r1, r2). Actually, this procedure is quite similar to the fusion
for the s/ (3) trigonometricR-matrix, so we do not give a detailed derivation of the functional
equations.

We can defind.-operators related to the ‘antisymmetric’ representation

_ 1
Lf;)(x; ri,r2) = ————[LY (=D x; 11, 1) LY ()Y x; 11, 12)
d’l (x5 r142)
—(=DM2 LN (=D x; 1, r) LY (1) x; 11, 12)] (3.33)

where indiceqi, k, I} and{j, m, n} areevenpermutations ofl, 2, 3} and we define

3 3
¢y (x;r) = (Hh,-‘(r) +x Hh,-*(r)). (3.34)
i=1 i=1
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Let ™ (x; r1, o) be the transfer matrix constructed from theperators (3.33).
Omitting a dependence of" (x,; r1, r2), 1) (x,; 1, r2) ON 7y, r2 ONe can show that the
following system of functional equations holds:

— M 7 M 7
1P ()t P (wx,) = Po(xp; r141.20) + b1 (X3 1) MEP (x)) + o1 (x5 r10) M 1 (w0x))

(3.35)
I (x )T (0x,) = Do(xp: ras10) + @1 (xp; r24) ™1 (xp) + @7 (xp; r2) ™1™ (wx)
(3.36)
with ¢ (x,; ) defined in (3.34) and
Do(xp; 7'y r) = A+ A5 + Ay (3.37)
wherek;, i = 1, 2, 3 are three roots of the following cubic equation:
AB+ar?+br+c=0 (3.38)
3 3 +0..N\2 3 3 — (N2
a=x; ka(f)z Z; I;l((rr))z - Hh?(r)z le };1_(72))2 (3.39)

SR (T h 2 N[y h D2 b (1?2 s B (r)?
v=11 [hf(r/)]—2<n THGE "‘P)[H W h7<r’>2] (3.40)

i=1 i=1

3 3 3 3 2
c= (X§ [Tnren?=T1 hi(r/>2) (xﬁ [T -T] h,-(r)z) . (3.41)
i=1 i=1 i=1 i=1

A system of functional equations similar (3.35), (3.36) for ‘factoriz€@3) L-operators
has been obtained in [24] and discussed in [11]. However, for that case thet&isyrometry
with respect to the indices df-operators and as a result, the functional relations will have a
slightly more complicated form and involve explicitly shift operators in the ‘quantum’ space.
It is easy to see that the system of functional equations (3.35), (3.36) is invariant under
the replacement; — rp, tW(x,;r1,72) — t*(x,;r1,72). However, it is not true in
general that all eigenvalues of the transfer matri¢8gx ), i (x,) satisfyr™ (x,; r1, r2) =
t™(x,; r2, r1). The spectrum of ¥ (x,), 7*)(x,) also involves ‘non-symmetric’ solutions of
(3.35), (3.36).

4. The homogeneous casg = r;

A great simplification occurs if we restrict ourselves to the case of the completely homogeneous
modelr; = rp = r. In this case all roots in (3.38) coincide and the functiyix,; r, r) has
a very simple form. Let us define

S hy(r)

It is easy to see that for this case the transfer matrices r, r) andz(x,; r, r) are effectively
the functions of a single variable= x,/x.. Namely,

3 M 3 M
t(xpir,r) = (x, th(r)) t(xp/xr) t(xp;r,r) = <x, 1_[ h?(r)) t(x,/x). (4.2)
i=1 i=1

Then, omitting the superscript), the system of functional equations (3.35), (3.36) can be
rewritten as follows:
1) (=x) =31 —xHM + 1 — )Mi(x) + A + )M (—x)

Tx)i(=x) =30 =xH" + 1 = )Mt (x) + A +x)Y 1 (—x) (4-3)
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wherer (x) andz(x) are polynomials inx of the degree\.
Let us define

u(x) =t(x)+ QL +x)™ a(x) =1(x)+ @ +x)M. (4.4)
Then we have from (4.3)
u(x)u(—x) = iu(x)u(—x) (4.5)

u@u(—x) = 1 —x)M@x) +iax) + L +x)" @(—x) +i(-x)).  (4.6)
The solution of (4.5) can be written as follows:

k
u(x) =ax)b(x) u(x) =a(—x)b(x) alx) = H(ui —X) k=0,....M
i=1

(4.7)

ui,i=1,..., k—the roots of the polynomial(x) of the degreé& andb(x) is the polynomial
in x of the degreeVf — k.
Then we have from (4.5), (4.6)
c@)e(=x) = L= x)Y(ax) +a(-x))? (4.8)
c(x) = a@)a(—x)b(x) — (L +x)"(a(x) +a(—x)) (4.9)
wherec(x) is the polynomial inc of the degreé/ + k.
In principle it is straightforward to solve (4.8), (4.9) in termsf First we need to find
the roots of the polynomial(x) + a(—x):

Lk/2)
a(x)ta(—x) = A l_[ (”1'2 —x?) (4.10)
i=1

where|k/2] is the integer part o /2.
Now a general solution of (4.8) has the following form:

Iy Lk/2] I Lk/2]
c@)=r1-0)"A+0" " [Jwi =0 ] @+ Joi—x) J] @i+x
i=1 i=l1+1 i=1 i=lp+1
n=0,....,M, 0< i <l < [k/2). (4.11)

The last step is to substitute (4.7), (4.10) and (4.11) into (4.9) and demarid thahould be
a polynomial inx. It gives us a closed system of equationspandu;.
As a result we come to the system of equationgoandv;:

k + — .
BT 1 iz k2
j=1 1y * o
k Lk/2]
[ [ +u)=[]02—ud) i=1... .k (4.12)
j=1 j=1
I Lk/2] n
Vi — U; v tu; 1+u;
]‘[-’T ! =—(1 ) n=0,....M,i Lb=0,...,|k/2].
=1 Vj T U; fiet] Vj — U; — Ui

(4.13)

Itis not difficult to solve (4.12), (4.13) for = 0, 1 and to obtain some eigenvalues of the
transfer matrix?’, T, atry = r, for any M. However, in general the system (4.12) and (4.13)
is a transcendental system of equations and cannot be solved explicitly for any vatues of
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Therefore, (4.7)—(4.13) together with (4.1), (4.2) and (4.4) give the solution for the
spectrum of the transfer matri, 7, in the homogeneous casg= r,. However, we should
say that this case is quite restrictive and, in fact, all dependence on the vertical ragidiy
matricesk;; in (2.1) can be absorbed by a redefinition of the paramsgter

5. The Bethe ansatz technique for ‘fusedL-operators

In the previous section we considered the solution to the functional relations (3.35), (3.36)
for the casepy = po = p, r1 = rp, = r. However, a direct Bethe ansatz method can also
be developed for this case. Let us make some transformations éf-tiperators given by
(3.15)—(3.17) (here we consider only the case 0). Define thel.’-operators:

Lj; = k& (p) /& (r) LY (pir. 1)E;(r) /€ (p) (5.1)
where£(p) is defined in (3.26),

3
k= (W (P~ (PR =) ™2 hE(p) =] rEp). (5.2)
i=1

The transfer matrices fat(?- and L’-operators differ only by the scalar factet!. Then all
matrix elements of.” are the functions of a single parametes= (x,,/x,)l/z. To obtain the
simplest form ofL’ let us make the following equivalence transformation:
1 1 1 1

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1

Then we have for the matrix elements of theperators

Lii(a, B) = {x}(56,086.0 — 80.i8p.i) + [x](8.i+18p.i+1 — Sa,i-18p,i-1) (5.4)

Lij(a, B) = 2x (80,1x88,0 — ba, 88.i) (5.5)
where{x} = x +1/x, [x] = x —1/x, the indices — 1, i, i +1in (5.4) are defined by the cyclic
permutation of 12, 3 whilei, j, k in (5.5) is any permutation of, 2, 3 and

Lj=cL;c™t c=1% (5.3)

1 i<j
€ij = . . (5-6)
-1 i>j.
In (5.4), (5.5) we imply that the enumeration of rows and columns is givei®hl, 2, 3).

From (5.4), (5.5) we can easily observe that: (i) the representation matrices of the diagonal
L-operators are diagonal and for all of them the compot(@&r) is equal to{x}; (ii) the non-
diagonalL-operators have zeros in the O-rows.

Therefore, we can conclude that for the transfer matrix

T = > Liiy(@1, B) .- Liyi, (et Bur) (5.7)

.....

i1seming

all matrix elementi;fl1 ,,,,,,,,,, ] M = 0, for which there is at least one 0-component among the set
as, ..., ay and all indicesj; run the valuegl, 2, 3). So, the transfer matrix (5.7) has the
block-down-triangular form.

For example, the simplest block has a dimension 1:
Ty g = 3™, (5.8)

Further there ara/ blocks 3x 3 of the form:

=0.,...,0,.0,..,0 __ M—1(1)Jk
Ty bico..0 = {x} () (5.9)
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where_T<1) is the one-site transfer matrix for the ‘reducédbperators which can be obtained
from L by removing all 0-components, i.e.

Li;(i1, j1) = Lij (i1, jr) i1, i=(1,273). (5.10)
The nextM (M — 1)/2 blocks in the transfer matrix have the dimensién<33?:
Ty oo ioro = 2T @0 (5.11)

whereT @ is the two-site transfer matrix for the ‘reduceti*operators. In thath step we
haveC}, blocks obtained from the-site transfer matrices. In the last step we have one block:

T ’M . As aresult we obtain a decomposition of the initi¥{l-dimensional space into the

direct sum of the subspacgs.’ , C7,3". Therefore, the initial problem of calculation of the
spectrum for the transfer matrix (5.7) has been reduced to the spectral problem for the transfer
matricesT ™.

Itis easy to see that the-operators given by (5.10) coincide with tiRematrix (3.29) for
the s/ (3) model. Hence, one can use the standard nested Bethe ansatz technique [20] for this
model. We give here only the final result for the eigenvalues for the defoshidgmodel
with the arbitrary deformation parametegrsindp; ;:

A) = p[q . w(2)+x ][ngl_[“’(i)/!jw(%) pia“ﬁw<1>}

13/02,3 i=1 PYa i Plz k=1 \%k
(5.12)
where 0< b < a < n,wkx) = q* and the two sets of parameters ..., y, andzy, ..., z,
should be deflned from the system of the Bethe ansatz equations:
_ o1 layi/ysl %%
w(y)" = (=D ps 30" =
g [qyj/yz] ,!_[1 Vi
a
Tk P13 [gzx/z1]
() =0 1(—) s
i=1 Yi £2,3 1k [qZ]/Zk]
wherep = p1.202.3031. However, we need only a particular case of this solution
q = i Pjj+1 = —Pj+1,j = —i ] = 1, 2, 3. (513)

In this case the formulae (5.13) become much more simple:

b a
IeoNn — (__1yn—a—1 /Z_k 2k n—b—1 / _@
w' ()" = (=1) L[lw (yi) i]lw (y) -1 w') = o3
(5.14)

In comparison with equations (4.12), (4.13), equations (5.14) do not contain the redundant
solutions. The reason for this can be easily understood. Namely, if we consider another
type of L-operators which can be obtained from the initial ones by the transposition of the
representation matrices, one can conclude that the transfer matrix for them satisfies the same
functional relations (4.3). The resulting equations of the Bethe ansatz for this case can be
obtained from (5.13) by the following substitution:

x—xt syt st e e (5.15)

After this we should fix the parameters of deformation as in (5.13). So, the system of
the equations (4.12), (4.13) contains the solutions to Bethe ansatz equations for both cases.
Unfortunately, we have failed to find an explicit correspondence between (4.12), (4.13) and
(5.14).
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6. Discussion

In this paper we have obtained the functional relations for eigenvalues of the transfer matrix
of thesl(3) CPM atg? = —1. In the completely homogeneous case we have also developed
a direct Bethe ansatz scheme.

A whole set of functional equations for the usual chiral Potts model has been obtained in
[26]. However, thesl(3) case looks much more difficult. In particular, a proper generalization
of the Baxter construction of th@-matrix for the eight-vertex model [5] which works for the
usual CPM [6] fails for thel(3) case. However, the structure of functional equations for the
arbitrary N should be governed by a proper generalization of quadratic ‘fusion’ rules [27, 28]
which should have the same functional form for t#h@:) case at roots of unity as well. Then
it should be possible to define a set@fmatrices for thei(n) case. Of course, the boundary
conditions for ‘fusion’ rules and analytical properties of solutiong‘at= —1 will be extremely
complicated. However, even a trigonometric limit of #é:) chiral Potts model ajV = —1
is of a great interest, because it corresponds ta:tteyer Zamolodchikov model under the
proper modification of boundary conditions on a three-dimensional lattice. We hope to address
these problems in further publications.
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