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Abstract. We obtain the functional relations for the eigenvalues of the transfer matrix of thesl(3)
chiral Potts model forq2 = −1. For the homogeneous model in both directions a solution of these
functional relations can be written in terms of roots of Bethe ansatz-like equations. In addition, a
direct nested Bethe ansatz has also been developed for this case.

1. Introduction

The discovery of the chiral Potts model (CPM) and newN -state solutions of the Yang–Baxter
relation [1–4] is one of the most impressive results in the theory of two-dimensional lattice
integrable systems [5]. A remarkable feature of this model is that the spectral parameters belong
to a high genus algebraic curve. The reason for this remained unclear until it was shown that
the weights of the CPM naturally appear as intertwiners of the cyclic representations forsl(2)
L-operators [6] related to the six-vertex model [7].

The next step was to generalize the CPM for thesl(n) case forqN = −1 [8]. As a result,
a newNn−1-state family of generalized CPMs has been obtained with Boltzmann weights
satisfying the Yang–Baxter relation [9,10].

Then Bazhanov and Baxter [11] made a remarkable observation that thesl(n) CPM with
N = 2 is related to the integrable three-dimensional Zamolodchikov model [12,13]. Therefore,
a new link between two quite different regions of the theory of integrable models has been
revealed. It is well known that the tetrahedron equations provide sufficient conditions for a
commutativity of the transfer matrices in three dimensions [14,15]. As a result, a newN -state
three-dimensional family of integrable models has been discovered with Boltzmann weights
satisfying the tetrahedron equation [16,17].

The Zamolodchikov model attracted a lot of attention even before the appearance of the
CPM. Its partition function in the thermodynamic limit has been calculated in [18] and the
related Hamiltonian has been studied in [19]. It was shown in [19] that the Zamolodchikov
model with two layers is equivalent to the critical two-dimensional free-fermion model.
However, the structure of the spectrum of the Zamolodchikov model with three and more
layers remains unclear.
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boos@avzw02.physik.uni-bonn.de
‖ E-mail address:vladimir@maths.anu.edu.au
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Figure 1. The square latticeL.

In this paper we try to take several steps towards the understanding of the structure of the
spectrum of thesl(3)CPM which is equivalent to the ‘modified’ (in the terminology of [11,18])
three-layer Zamolodchikov model. Starting from the general case we carefully analyse the
homogeneous case of thesl(3) CPM where a usual nested Bethe ansatz technique [20] can be
applied.

The paper is organized as follows. In section 2 we give a full description of thesl(3)CPM
and introduce all necessary notations. In section 3 we describe a ‘fusion’ procedure [21–23]
for the sl(3) CPM for q2 = −1 (N = 2) and obtain the closed functional equations for
eigenvalues of the transfer matrix. Section 4 is devoted to the spectrum of the model in the
completely homogeneous case. In section 5 we apply the nested Bethe ansatz technique to
obtain eigenvalues of the transfer matrix for the homogeneous case. In the last section we
discuss our results and further directions for investigation.

2. Thesl(3) CPM

In this section we give all necessary definitions for thesl(3)CPM with fixedN . All definitions
and formulae of this section are just a specification of thesl(n) case forn = 3 [10].

Consider an oriented square latticeL and its medial latticeL′ (shown in figure 1 by solid
and dashed lines, respectively). The oriented vertical (horizontal) lines ofL′ carry rapidity
variablesp1, p2 (r1, r2) in an alternating order (note that the orientations of rapidity lines shown
by open arrows alternate too). The edges of the latticeL are oriented in such a way that all
the NW–SE edges have the same (NW–SE) direction while the NE–SW edges are oriented in
a checkerboard order.

Each rapidity variable is represented by three 2-vectors (h+
i (p), h

−
i (p)), i = 1, 2, 3 which

specify the pointp of the algebraic curve0 defined by relations(
h+
i (p)

N

h−i (p)
N

)
= Kij

(
h+
j (p)

N

h−j (p)
N

)
∀i, j = 1, 2, 3 (2.1)

whereKij are 2× 2 complex matrices of moduli satisfying relations

detKij = 1 Kii = KijKjkKki = 1. (2.2)

Hereafter we imply that indicesi, j, k, . . . run the values 1, 2, 3 modulo3.
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Figure 2. The weightsW̄pq(α, β) andW̄−1
pq (α, β).

Below we need the automorphismτ on the curve0 defined as follows:

h+
j (τ (p)) = h+

j (p) h−j (τ (p)) = ωh−j (p) j = 1, 2, 3. (2.3)

On each site of the latticeL placeZN ×ZN spins, which are described by a local variable

α = (α1, α2) α1, α2 = 0, 1, . . . , N − 1. (2.4)

There are two kinds of neighbouring local state pairs depending on the relative orientation
of the dashed and solid lines as indicated in figure 2, with statesα andβ, and Boltzmann
weightsWpq(α, β) and(Wqp(α, β))

−1 on the edges ofL.
The functionW̄pq(α, β), α, β ∈ ZN × ZN is defined by the following relations:

W̄p,q(α, β) = ωQ(α,β)gpq(0, α − β) ω = exp

(
2π i

N

)
(2.5)

where

Q(α, β) = β1(β1− α1) + β2(β1− α1 + β2 − α2), α, β ∈ ZN × ZN (2.6)

and the functiongpq(0, α) has the following form:

gpq(0, α) =
∏α1+α2−1
β=0 (h+

0(p)h
−
0 (q)− h+

0(q)h
−
0 (p)ω

−β)∏2
i=1

∏αi−1
βi=0(h

+
i (p)h

−
i (q)− h+

i (q)h
−
i (p)ω

1+βi )
. (2.7)

We choose a normalization of̄Wpq(α, β) as

W̄pq(0, 0) = 1. (2.8)

Then it is easy to see that

W̄pp(α, β) = δ̄α,β δ̄α,β ≡
{

1 α = β (modN)

0 otherwise.
(2.9)

The functionW̄pq(α, β) satisfies the inversion relation∑
β∈ZN×ZN

W̄pq(α, β)W̄qp(β, γ ) = δ̄α,γ8pq (2.10)

where

8pq = N2
xNp − xNq
xp − xq

3∏
i=1

xi(p)− xi(q)
xi(p)N − xi(q)N xi(p) ≡ h−i (p)

h+
i (p)

xp ≡
3∏
i=1

xi(p).

(2.11)

Now let us suppose that our latticeL hasM sites in a horizontal direction andL sites
in a vertical one (L should be even). As usual we imply cyclic boundary conditions in both
directions.
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Figure 3. R-matrix S̄δ,βγ,α(p1, p2; r1, r2).

Let us denote the spin variables of three consecutive rows asσ1, . . . , σM , σ ′1, . . . , σ
′
M and

σ ′′1 , . . . , s
′′
M (see figure 1). Then we can define twoN2M ×N2M transfer matricesTp1 andT̄p2

of the lengthM

[Tp1]
σ ′1...σ

′
M

σ1...σM =
M∏
i=1

W̄p1r1(σi, σ
′
i )W̄r2p1(σ

′
i , σi+1) (2.12)

[T̄p2]
σ ′′1 ...σ

′′
M

σ ′1...σ
′
M
=

M∏
i=1

W̄p2r2(σ
′′
i+1, σ

′
i )

W̄p2r1(σ
′′
i , σ

′
i )
. (2.13)

Let us fix the rapidity variablesr1, r2 and use more simple notationsTp1 andT̄p2.
The partition function is

Z = T r(Tp1T̄p2)
L/2. (2.14)

In the next sections we derive several functional relations betweenTp1 andT̄p2.
We can construct twoR-matrices from the weights̄Wpq(α, β). Define (see figure 3)

S̄δ,βγ,α(p1, p2; r2, r1)= W̄r2p1(γ, α)W̄p1r1(α, δ)W̄p2r2(β, γ )

W̄p2r1(β, δ)
. (2.15)

ThisR-matrix satisfies the Yang–Baxter equation

S̄12(p1, p2; q1, q2)S̄13(p1, p2; r1, r2)S̄23(q1, q2; r1, r2)
= S̄23(q1, q2; r1, r2)S̄13(p1, p2; r1, r2)S̄12(p1, p2; q1, q2). (2.16)

It leads us to the following commutation relation for the product of the transfer matrices
T̄p2Tp1:

T̄p2Tp1T̄q2Tq1 = T̄q2Tq1T̄p2Tp1 (2.17)

wherep1, p2, q1, q2 are four points on the curve0.
Similarly, one can introduce the secondR-matrix S (see [10], for example) and prove

another commutation relation

Tp1T̄p2Tq1T̄q2 = Tq1T̄q2Tp1T̄p2. (2.18)

However, all commutation relations between the transfer matrices are the consequence of
the only equation which is called the ‘star–star’ relation [11,24]. To write it down define two
‘stars’ (see figures 4 and 5)

Wp1p2
r2r1

(α, β, γ, δ) =
∑
σ

W̄p1r1(α, σ )W̄p2r2(γ, σ )W̄r2p1(σ, β)

W̄p2r1(δ, σ )
(2.19)
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Figure 4. The ‘star’ weightWp1p2
r1r2 (α, β, γ, δ).

Figure 5. The ‘star’ weightŴp1p2
r1r2 (α, β, γ, δ).

Figure 6. The ‘star–star’ relation.

and

W̃p2p1
r2r1

(α, β, γ, δ) =
∑
σ

W̄p1r1(σ, γ )W̄p2r2(σ, α)W̄r2p1(δ, σ )

W̄p2r1(σ, β)
. (2.20)

In these notations the star–star relation can be written as (see figure 6)

W̄p2p1(δ, α)W̄r2r1(δ, γ )W
p1p2
r1r2

(α, β, γ, δ)W̃p2p1
r2r1

(α, β, γ, δ)W̄r2r1(α, β)W̄p2p1(γ, β). (2.21)

The Yang–Baxter equation (2.16) can be easily obtained by repeated applications of (2.21).
Now using (2.21) we obtain one more ‘commutation’ relation between the transfer matrices

Tp1, T̄p2. To do that define the shift operator

X
σ ′1...σ

′
M

σ1...σM =
M∏
i=1

δ̄σi ,σ ′i+1
. (2.22)
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Then, using cyclic boundary conditions in a horizontal direction and relation (2.21), we obtain

Tp1T̄p2U
(d)X−1 = U(d)X−1T̄p2Tp1 (2.23)

whereU(d) is the diagonal matrix independent ofp1, p2

[U(d)]
σ ′1,...,σ

′
M

σ1,...,σM =
M∏
i=1

δ̄σi ,σ ′i W̄r2,r1(σi, σi+1). (2.24)

3. Functional relations atq2 = −1

. Here we consider only the caseq2 ≡ ω = −1. The product of the transfer matricesTp1T̄p2

can be easily rewritten in terms of ‘star’ weights (2.19)

Tp1T̄p2 =
M∏
i=1

Wp1p2
r1r2

(σi, σi+1, σ
′
i+1, σ

′
i ). (3.1)

We can specify the horizontal rapidities in such a way that the left and right ‘gauge’ factors
W̄p1,p2(α, β) in (2.21) become degenerate. Namely, there are two simplest choices to do that

p2 = τλ(p) p1 = p λ = 0, 1 (3.2)

whereτ is defined in (2.3) and the caseλ = 0 corresponds just top2 = p1 = p.
First let us setp2 = p1 = p. Then using (2.21) and the explicit form of̄Wp1p2(α, β)

it is easy to see that we have the only non-zero matrix elements forW
pp
r1r2(α, β, γ, α) if

β = γ . Similarly settingp2 = τ(p1) we obtain that the only non-zero matrix elements
for W̄pτ(p)

r1r2 (α, β, β, δ) are whenα = δ.
Therefore, we obtain forTpT̄τλ(p) that if σI = σ ′′I for someI = 1, . . . ,M then

[TpT̄τλ(p)]
σ ′′1 ,...,σ

′′
M

σ1,...,σM = 0 if σJ 6= σ ′′J for some J 6= I, J = 1, . . . ,M. (3.3)

As a result we can splitTpT̄τλ(p) into ‘diagonal’ and ‘non-diagonal’ parts. To do this explicitly
consider two 4× 4 projectors

P +
γ,δ = 1

4, P−γ,δ = δγ,δ − 1
4 γ, δ = 1, . . . ,4. (3.4)

Now let us considerR-matrix (2.15) as 4× 4 matrix with respect to horizontal indices with
fixed vertical ones and denote it asS̄p1p2(α, β). Then we have

P +S̄pp(α, β)P
+ = P +S̄pp(α, β) P−S̄pp(α, β)P− = S̄pp(α, β)P− (3.5)

P +S̄pτ(p)(α, β)P
+ = S̄pτ(p)(α, β)P + P−S̄pτ(p)(α, β)P− = P−S̄pτ(p)(α, β). (3.6)

As a consequence we have the following decomposition of the productTpT̄τλ(p):

TpT̄τλ(p) = T r(P +S̄pτλ(p)(α, β)P
+)M + T r(P−S̄pτλ(p)(α, β)P−)M. (3.7)

It is not difficult to check that

T r(P +S̄pτλ(p)(α, β)P
+)M = 8M

p,rλ+1
I (3.8)

whereI being the identity matrix 4M × 4M ,8pq is defined in (2.11) and all subscripts should
be consideredmodulo2. Denote the second term in (3.7) as

T (λ)(p; r1+λ, r2+λ) = T r(P−S̄pτλ(p)(α, β)P−)M. (3.9)

The transfer matrix (3.9) has non-zero matrix elements only ifσI 6= σ ′′I , ∀I = 1, . . . ,M.
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It is not difficult to construct local ‘fused’ weights for the transfer matrixT (λ)(p; r1+λ, r2+λ).
First let us write the following decomposition forP−:

P−γ,δ =
3∑
i=1

c(i, γ )c(i, δ) c(i, α) = 1
2ω

iα1+ 1
2 i(i−1)α2 i = 1, 2, 3, α ∈ Z2 × Z2.

(3.10)

Now consider the family of ‘fused’L-operators which act in the tensor product of the auxiliary
spaceC3 and the quantum spaceC4:

L
(λ)
ij (p; r1, r2) = 3p;r1,r2

∑
γ,δ∈Z2×Z2

c(i, γ )c(j, δ)S̄δ,βγ,α(p, τ
λ(p); r2, r1) (3.11)

3p;r1,r2 =
1

4

h−3 (r1)
2h+

3(p)
2 − h−3 (p)2h+

3(r1)
2

h−3 (r2)2h
+
3(p)

2 − h−3 (p)2h+
3(r2)

2

3∏
i=1

(h−i (r2)h
+
i (p) + h−i (p)h

+
i (r2)) (3.12)

andS̄δ,βγ,α(p1, p2; r2, r1) is defined in (2.15).
Introduce the transfer matrixt (λ)(p; r1, r2) constructed from the ‘fused’L-operators

L
(λ)
ij (p; r1, r2) over the auxiliary spaceC3

t (λ)(p; r1, r2)σ
′′
1 ,...,σ

′′
M

σ1,...,σM =
∑
i1

. . .
∑
iM

M∏
α=1

[L(λ)iα,iα+1
(p; r1, r2)]σ

′′
α
σα . (3.13)

It is easy to check that two transfer matricesT (λ)(p; r1, r2) in (3.9) andt (λ)(p; r1, r2) are related
as follows:

T (λ)(p; r1, r2) = 1

3M
p;r1,r2

t (λ)(p; r1, r2). (3.14)

Therefore, the problem of calculating eigenvalues for the product of two transfer matrices
TpT̄τλ(p) in (3.7) is reduced to a calculation of the eigenvalues for the transfer matrix
t (λ)(p; r1, r2) in (3.13).

Let us give explicit formulae for the matrix elements ofL(λ)ij (p; r1, r2). We have

L
(λ)
ii (p; r1, r2) = u+

i+1(p; r1, r2)Xi+1 + u−i−1(p; r1, r2)Xi−1 (3.15)

L
(λ)
i,i+1(p; r1, r2) = Zi,i+1(v

(λ)
i+1−λ(p; r1, r2)Xi+1−λ +w(1−λ)i−1 (p; r1, r2)Xi−1) (3.16)

L
(λ)
i,i−1(p; r1, r2) = Zi,i−1(v

(1−λ)
i−1+λ(p; r1, r2)Xi−1+λ +w(λ)i+1(p; r1, r2)Xi+1) (3.17)

where

u±i (p; r1, r2) =
h±i (r2)
h±i (r1)

3∏
α=1

h∓α (p)h
±
α (r1) (3.18)

v
(

0
1 )

i (p; r1, r2) = h∓i (p)h±i (r2)h−i+1(r1)h
+
i+1(p)h

−
i−1(p)h

+
i−1(r1) (3.19)

w
(

0
1 )

i (p; r1, r2) = h∓i (p)h±i (r2)h∓i+1(r1)h
±
i+1(p)h

∓
i−1(r1)h

±
i−1(p). (3.20)

The 4× 4 matricesXi andZi,j act inZ2 × Z2 and have the following matrix elements:

〈α|X1|β〉 = δα1,β1δα2,β2−1 〈α|X2|β〉 = δα1,β1−1δα2,β2 (3.21)

〈α|Z1|β〉 = ωα2δα1,β1δα2,β2 〈α|Z2|β〉 = ωα1δα1,β1δα2,β2 (3.22)

X1X2X3 = 1 Z3 = 1 Zij = ZiZ−1
j i 6= j = 1, 2, 3. (3.23)

They satisfy the usual relations

XiZjk = ωδij−δikZjkXi ZijZjkZki = 1. (3.24)
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Actually, it is convenient to introduce the ‘gauge-transformed’L-operators

L̂
(λ)
ij (xp; r1, r2) =

[ 3∏
i=1

h+
i (p)

]−1

[ξi(p)]
(−1)λL

(λ)
ij (p; r1, r2)[ξj (p)](−1)1+λ

(3.25)

where

ξ(p) ≡ (ξ1(p), ξ2(p), ξ3(p)) = (x3(p), 1, x
−1
1 (p)) (3.26)

andxp, xi(p) are defined in (2.12).
It is easy to see thatL-operators (3.25) depend on the rapidity variablep only via the

combinationxp. Therefore, we have

t (λ)(p; r1, r2) =
( 3∏
i=1

h+
i (p)

)M
t(λ)(xp; r1, r2) (3.27)

where t (λ)(xp; r1, r2) is the transfer matrix constructed from theL-operators (3.25) and is
obviously just a polynomial in the variablexp of the degreeM.

It follows that we can consider the parametersxp, h±i (r1), h
±
i (r2) as independent ones and

do not take into account the surface equations (2.1).
L-operators (3.25) satisfy the following Yang–Baxter equation:∑

i2,j2

R
(λ)

i1,i2;j1,j2
(x/y)L̂

(λ)
i2i3
(x2)L̂

(λ)
j2j3
(y2)=

∑
i2,j2

L̂
(λ)
j1j2
(y2)L̂

(λ)
i1i2
(x2)R

(λ)

i2,i3;j2,j3
(x/y) (3.28)

where we omit a dependence onr1, r2 in L̂(λ)(x; r1, r2) andR(λ)i1,i2;j1,j2
(x) coincides with the

deformed trigonometricsl(3) R-matrix. Namely, let us assume for a moment thatq is arbitrary
and introduce theR-matrix [25]

Ri1,i2;j1,j2(x, q, ρ) = δi1i2δj1j2δi1j1(q − 1)(x + x−1q−1) + δi1i2δj1j2ρi1j1(x − x−1)

+δi1j2δi2j1(1− δi1j1)σi1i2(x) (3.29)

where

ρii = ρijρji = 1 σij ≡


0 i = j
(q − q−1)x i < j

(q − q−1)x−1 i > j.

(3.30)

Then

R
(λ)

i1,i2;j1,j2
(x) = Ri1,i2;j1,j2(x

(−1)λ , q, ρ) (3.31)

with

q = i ρj,j+1 = ρ−1
j+1,j = i(−1)λ+1

j = 1, 2, 3. (3.32)

Now using a fusion technique for theR-matrix (3.29) we can construct functional equations
for the transfer matrixt (λ)(xp; r1, r2). Actually, this procedure is quite similar to the fusion
for thesl(3) trigonometricR-matrix, so we do not give a detailed derivation of the functional
equations.

We can defineL-operators related to the ‘antisymmetric’ representation

L̄
(λ)
ij (x; r1, r2) =

1

φ−1 (x; r1+λ)
[L̂(λ)km((−1)λx; r1, r2)L̂(λ)ln ((−1)1+λx; r1, r2)

−(−1)λ+δi,2L̂
(λ)
lm ((−1)λx; r1, r2)L̂(λ)kn ((−1)1+λx; r1, r2)] (3.33)

where indices{i, k, l} and{j,m, n} areevenpermutations of{1, 2, 3} and we define

φ±1 (x; r) =
( 3∏
i=1

h−i (r)± x
3∏
i=1

h+
i (r)

)
. (3.34)
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Let t̄ (λ)(x; r1, r2) be the transfer matrix constructed from theL-operators (3.33).
Omitting a dependence oft (λ)(xp; r1, r2), t̄ (λ)(xp; r1, r2) on r1, r2 one can show that the

following system of functional equations holds:

t (λ)(xp)t
(λ)(ωxp) = 80(xp; r1+λ,2+λ) + φ−1 (xp; r1+λ)

M t̄ (λ)(xp) + φ+
1(xp; r1+λ)

M t̄ (λ)(ωxp)

(3.35)

t̄ (λ)(xp)t̄
(λ)(ωxp) = 80(xp; r2+λ,1+λ) + φ−1 (xp; r2+λ)

Mt(λ)(xp) + φ+
1(xp; r2+λ)

Mt(λ)(ωxp)

(3.36)

with φ±1 (xp; r) defined in (3.34) and

80(xp; r ′, r) = λM1 + λM2 + λM3 (3.37)

whereλi , i = 1, 2, 3 are three roots of the following cubic equation:

λ3 + aλ2 + bλ + c = 0 (3.38)

a = x2
p

3∏
i=1

h+
i (r)

2
3∑
i=1

h+
i (r
′)2

h+
i (r)

2
−

3∏
i=1

h−i (r)
2

3∑
i=1

h−i (r
′)2

h−i (r)2
(3.39)

b =
3∏
i=1

h+
i (r)

2

[h+
i (r
′)]−2

( 3∏
i=1

h−i (r)
2

h+
i (r)

2
− x2

p

)[ 3∏
i=1

h−i (r
′)2

h+
i (r
′)2

3∑
i=1

h−i (r)
2

h−i (r ′)2
− x2

p

3∑
i=1

h+
i (r)

2

h+
i (r
′)2

]
(3.40)

c =
(
x2
p

3∏
i=1

h+
i (r
′)2 −

3∏
i=1

h−i (r
′)2
)(
x2
p

3∏
i=1

h+
i (r)

2 −
3∏
i=1

h−i (r)
2

)2

. (3.41)

A system of functional equations similar (3.35), (3.36) for ‘factorized’sl(3) L-operators
has been obtained in [24] and discussed in [11]. However, for that case there is noZ3 symmetry
with respect to the indices ofL-operators and as a result, the functional relations will have a
slightly more complicated form and involve explicitly shift operators in the ‘quantum’ space.

It is easy to see that the system of functional equations (3.35), (3.36) is invariant under
the replacementr1 → r2, t (λ)(xp; r1, r2) → t̄ (λ)(xp; r1, r2). However, it is not true in
general that all eigenvalues of the transfer matricest (λ)(xp), t̄ (λ)(xp) satisfyt̄ (λ)(xp; r1, r2) =
t (λ)(xp; r2, r1). The spectrum oft (λ)(xp), t̄ (λ)(xp) also involves ‘non-symmetric’ solutions of
(3.35), (3.36).

4. The homogeneous caser1 = r2

A great simplification occurs if we restrict ourselves to the case of the completely homogeneous
modelr1 = r2 = r. In this case all roots in (3.38) coincide and the function80(xp; r, r) has
a very simple form. Let us define

xr =
3∏
i=1

h−i (r)
h+
i (r)

. (4.1)

It is easy to see that for this case the transfer matricest (xp; r, r) andt̄ (xp; r, r) are effectively
the functions of a single variablex = xp/xr . Namely,

t (xp; r, r) =
(
xr

3∏
i=1

h+
i (r)

)M
t(xp/xr) t̄(xp; r, r) =

(
xr

3∏
i=1

h+
i (r)

)M
t̄(xp/xr). (4.2)

Then, omitting the superscript(λ), the system of functional equations (3.35), (3.36) can be
rewritten as follows:

t (x)t (−x) = 3(1− x2)M + (1− x)M t̄(x) + (1 +x)M t̄(−x)
t̄(x)t̄(−x) = 3(1− x2)M + (1− x)Mt (x) + (1 +x)Mt (−x) (4.3)
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wheret (x) andt̄ (x) are polynomials inx of the degreeM.
Let us define

u(x) = t (x) + (1 +x)M ū(x) = t̄ (x) + (1 +x)M. (4.4)

Then we have from (4.3)

u(x)u(−x) = ū(x)ū(−x) (4.5)

u(x)u(−x) = (1− x)M(u(x) + ū(x)) + (1 +x)M(u(−x) + ū(−x)). (4.6)

The solution of (4.5) can be written as follows:

u(x) = a(x)b(x) ū(x) = a(−x)b(x) a(x) =
k∏
i=1

(ui − x) k = 0, . . . ,M

(4.7)

ui , i = 1, . . . , k—the roots of the polynomiala(x) of the degreek andb(x) is the polynomial
in x of the degreeM − k.

Then we have from (4.5), (4.6)

c(x)c(−x) = (1− x2)M(a(x) + a(−x))2 (4.8)

c(x) = a(x)a(−x)b(x)− (1 +x)M(a(x) + a(−x)) (4.9)

wherec(x) is the polynomial inx of the degreeM + k.
In principle it is straightforward to solve (4.8), (4.9) in terms ofui . First we need to find

the roots of the polynomiala(x) + a(−x):

a(x) + a(−x) = λ
bk/2c∏
i=1

(v2
i − x2) (4.10)

wherebk/2c is the integer part ofk/2.
Now a general solution of (4.8) has the following form:

c(x) = λ(1− x)n(1 +x)M−n
l1∏
i=1

(vi − x)
bk/2c∏
i=l1+1

(vi + x)
l2∏
i=1

(vi − x)
bk/2c∏
i=l2+1

(vi + x)

n = 0, . . . ,M, 06 l1 6 l2 6 bk/2c. (4.11)

The last step is to substitute (4.7), (4.10) and (4.11) into (4.9) and demand thatb(x) should be
a polynomial inx. It gives us a closed system of equations onui andvi .

As a result we come to the system of equations onui andvi :

k∏
j=1

uj − vi
uj + vi

= −1 i = 1, . . . , bk/2c

k∏
j=1

(uj + ui) =
bk/2c∏
j=1

(v2
j − u2

i ) i = 1, . . . , k (4.12)

l1∏
j=1

vj − ui
vj + ui

bk/2c∏
j=l2+1

vj + ui
vj − ui = −

(
1 +ui
1− ui

)n
n = 0, . . . ,M, l1 l2 = 0, . . . , bk/2c.

(4.13)

It is not difficult to solve (4.12), (4.13) fork = 0, 1 and to obtain some eigenvalues of the
transfer matrixTpT̄p at r1 = r2 for anyM. However, in general the system (4.12) and (4.13)
is a transcendental system of equations and cannot be solved explicitly for any values ofk.
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Therefore, (4.7)–(4.13) together with (4.1), (4.2) and (4.4) give the solution for the
spectrum of the transfer matrixTpT̄p in the homogeneous caser1 = r2. However, we should
say that this case is quite restrictive and, in fact, all dependence on the vertical rapidityr and
matricesKij in (2.1) can be absorbed by a redefinition of the parameterxp.

5. The Bethe ansatz technique for ‘fused’L-operators

In the previous section we considered the solution to the functional relations (3.35), (3.36)
for the casep1 = p2 = p, r1 = r2 = r. However, a direct Bethe ansatz method can also
be developed for this case. Let us make some transformations of theL-operators given by
(3.15)–(3.17) (here we consider only the caseλ = 0). Define theL′-operators:

L′ij = κξi(p)/ξi(r) L(0)ij (p; r, r)ξj (r)/ξj (p) (5.1)

whereξ(p) is defined in (3.26),

κ = (h+(p)h−(p)h+(r)h−(r))−1/2 h±(p) =
3∏
i=1

h±i (p). (5.2)

The transfer matrices forL(0)- andL′-operators differ only by the scalar factorκM . Then all
matrix elements ofL′ are the functions of a single parameterx = (xp/xr)1/2. To obtain the
simplest form ofL′ let us make the following equivalence transformation:

L̄ij = CL′ij C−1 C = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (5.3)

Then we have for the matrix elements of theL̄-operators

L̄ii(α, β) = {x}(δα,0δβ,0 − δα,iδβ,i) + [x](δα,i+1δβ,i+1− δα,i−1δβ,i−1) (5.4)

L̄ij (α, β) = 2xεij (δα,kδβ,0 − δα,j δβ,i) (5.5)

where{x} = x +1/x, [x] = x−1/x, the indicesi−1, i, i +1 in (5.4) are defined by the cyclic
permutation of 1, 2, 3 while i, j, k in (5.5) is any permutation of 1, 2, 3 and

εij =
{

1 i < j

−1 i > j.
(5.6)

In (5.4), (5.5) we imply that the enumeration of rows and columns is given by(0, 1, 2, 3).
From (5.4), (5.5) we can easily observe that: (i) the representation matrices of the diagonal

L-operators are diagonal and for all of them the component(0, 0) is equal to{x}; (ii) the non-
diagonalL-operators have zeros in the 0-rows.

Therefore, we can conclude that for the transfer matrix

T̄
β1,...,βM
α1,...,βM

=
∑
i1,...,iM

L̄i1i2(α1, β1) . . . L̄iM i1(αM, βM) (5.7)

all matrix elements̄T j1,...,jM
α1,...,αM = 0, for which there is at least one 0-component among the set

α1, . . . , αM and all indicesjk run the values(1, 2, 3). So, the transfer matrix (5.7) has the
block-down-triangular form.

For example, the simplest block has a dimension 1:

T̄
0,...,0
0,...,0 = 3{x}M. (5.8)

Further there areM blocks 3× 3 of the form:

T̄
0,...,0,jk,0,...,0
0,...,0,ik ,0,...,0

= {x}M−1T (1)
jk

ik
(5.9)
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whereT (1) is the one-site transfer matrix for the ‘reduced’L-operators which can be obtained
from L̄ by removing all 0-components, i.e.

Lij (i1, j1) = L̄ij (i1, j1) i1, j1 = (1, 2, 3). (5.10)

The nextM(M − 1)/2 blocks in the transfer matrix have the dimension 32 × 32:

T̄
0,...,0,jk1,0,...,jk2,0,...,0
0,...,0,ik1,0,...,ik2,0,...,0

= {x}M−2T (2)
jk1,jk2

ik1,ik2
(5.11)

whereT (2) is the two-site transfer matrix for the ‘reduced’L-operators. In thenth step we
haveCnM blocks obtained from then-site transfer matrices. In the last step we have one block:

T (M)
j1,...,jM
i1,...,iM

.As a result we obtain a decomposition of the initial 4M -dimensional space into the

direct sum of the subspaces
∑M

n=0C
n
M3n. Therefore, the initial problem of calculation of the

spectrum for the transfer matrix (5.7) has been reduced to the spectral problem for the transfer
matricesT (n).

It is easy to see that theL-operators given by (5.10) coincide with theR-matrix (3.29) for
thesl(3) model. Hence, one can use the standard nested Bethe ansatz technique [20] for this
model. We give here only the final result for the eigenvalues for the deformedsl(3) model
with the arbitrary deformation parametersq andρi,j :

3(x) = [qx]n

ρb1,3ρ
a−b
2,3

a∏
i=1

w
(yi
x

)
+ [x]n

[
ρn−a2,3

ρb1,2

a∏
i=1

w

(
x

yi

) b∏
k=1

w
(zk
x

)
+
ρn−a1,3

ρb−a1,2

b∏
k=1

w

(
x

zk

)]
(5.12)

where 06 b 6 a 6 n, w(x) = [qx]
[x] and the two sets of parametersy1, . . . , ya andz1, . . . , zb

should be defined from the system of the Bethe ansatz equations:

w(yi)
n = (−1)a−1ρn2,3ρ

−b
a∏
j 6=i

[qyi/yj ]

[qyj/yi ]

b∏
k=1

w

(
zk

yi

)
a∏
i=1

w

(
zk

yi

)
= (−1)b−1

(
ρ1,3

ρ2,3

)n
ρa

b∏
l 6=k

[qzk/zl ]

[qzl/zk]

whereρ = ρ1,2ρ2,3ρ3,1. However, we need only a particular case of this solution

q = i ρj,j+1 = −ρj+1,j = −i j = 1, 2, 3. (5.13)

In this case the formulae (5.13) become much more simple:

w′(yi)n = (−1)n−a−1
b∏
k=1

w′
(
zk

yi

) a∏
i=1

w′
(
zk

yi

)
= (−1)n−b−1 w′(x) = {x}

[x]
.

(5.14)

In comparison with equations (4.12), (4.13), equations (5.14) do not contain the redundant
solutions. The reason for this can be easily understood. Namely, if we consider another
type ofL-operators which can be obtained from the initial ones by the transposition of the
representation matrices, one can conclude that the transfer matrix for them satisfies the same
functional relations (4.3). The resulting equations of the Bethe ansatz for this case can be
obtained from (5.13) by the following substitution:

x → x−1 yi → y−1
i zk → z−1

k ρi,j → ρj,i . (5.15)

After this we should fix the parameters of deformation as in (5.13). So, the system of
the equations (4.12), (4.13) contains the solutions to Bethe ansatz equations for both cases.
Unfortunately, we have failed to find an explicit correspondence between (4.12), (4.13) and
(5.14).
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6. Discussion

In this paper we have obtained the functional relations for eigenvalues of the transfer matrix
of thesl(3) CPM atq2 = −1. In the completely homogeneous case we have also developed
a direct Bethe ansatz scheme.

A whole set of functional equations for the usual chiral Potts model has been obtained in
[26]. However, thesl(3) case looks much more difficult. In particular, a proper generalization
of the Baxter construction of theQ-matrix for the eight-vertex model [5] which works for the
usual CPM [6] fails for thesl(3) case. However, the structure of functional equations for the
arbitraryN should be governed by a proper generalization of quadratic ‘fusion’ rules [27,28]
which should have the same functional form for thesl(n) case at roots of unity as well. Then
it should be possible to define a set ofQ-matrices for thesl(n) case. Of course, the boundary
conditions for ‘fusion’ rules and analytical properties of solutions atqN = −1 will be extremely
complicated. However, even a trigonometric limit of thesl(n) chiral Potts model atqN = −1
is of a great interest, because it corresponds to then-layer Zamolodchikov model under the
proper modification of boundary conditions on a three-dimensional lattice. We hope to address
these problems in further publications.
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